Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 24(9)2023 May 05.
Article in English | MEDLINE | ID: covidwho-2320397

ABSTRACT

We have previously published research on the anti-viral properties of an alkaloid mixture extracted from Nuphar lutea, the major components of the partially purified mixture found by NMR analysis. These are mostly dimeric sesquiterpene thioalkaloids called thiobinupharidines and thiobinuphlutidines against the negative strand RNA measles virus (MV). We have previously reported that this extract inhibits the MV as well as its ability to downregulate several MV proteins in persistently MV-infected cells, especially the P (phospho)-protein. Based on our observation that the Nuphar extract is effective in vitro against the MV, and the immediate need that the coronavirus disease 2019 (COVID-19) pandemic created, we tested here the ability of 6,6'-dihydroxythiobinupharidine DTBN, an active small molecule, isolated from the Nuphar lutea extract, on COVID-19. As shown here, DTBN effectively inhibits SARS-CoV-2 production in Vero E6 cells at non-cytotoxic concentrations. The short-term daily administration of DTBN to infected mice delayed the occurrence of severe clinical outcomes, lowered virus levels in the lungs and improved survival with minimal changes in lung histology. The viral load on lungs was significantly reduced in the treated mice. DTBN is a pleiotropic small molecule with multiple targets. Its anti-inflammatory properties affect a variety of pathogens including SARS-CoV-2 as shown here. Its activity appears to target both pathogen specific (as suggested by docking analysis) as well as cellular proteins, such as NF-κB, PKCs, cathepsins and topoisomerase 2, that we have previously identified in our work. Thus, this combined double action of virus inhibition and anti-inflammatory activity may enhance the overall effectivity of DTBN. The promising results from this proof-of-concept in vitro and in vivo preclinical study should encourage future studies to optimize the use of DTBN and/or its molecular derivatives against this and other related viruses.


Subject(s)
Alkaloids , COVID-19 , Nuphar , Mice , Animals , SARS-CoV-2 , Nuphar/chemistry , Alkaloids/pharmacology , Alkaloids/therapeutic use , Alkaloids/chemistry , Plant Extracts/pharmacology , Anti-Inflammatory Agents/pharmacology , Mice, Transgenic
2.
Molecules ; 26(16)2021 Aug 05.
Article in English | MEDLINE | ID: covidwho-1362396

ABSTRACT

The specificity of inhibition by 6,6'-dihydroxythiobinupharidine (DTBN) on cysteine proteases was demonstrated in this work. There were differences in the extent of inhibition, reflecting active site structural-steric and biochemical differences. Cathepsin S (IC50 = 3.2 µM) was most sensitive to inhibition by DTBN compared to Cathepsin B, L and papain (IC50 = 1359.4, 13.2 and 70.4 µM respectively). DTBN is inactive for the inhibition of Mpro of SARS-CoV-2. Docking simulations suggested a mechanism of interaction that was further supported by the biochemical results. In the docking results, it was shown that the cysteine sulphur of Cathepsin S, L and B was in close proximity to the DTBN thiaspirane ring, potentially forming the necessary conditions for a nucleophilic attack to form a disulfide bond. Covalent docking and molecular dynamic simulations were performed to validate disulfide bond formation and to determine the stability of Cathepsins-DTBN complexes, respectively. The lack of reactivity of DTBN against SARS-CoV-2 Mpro was attributed to a mismatch of the binding conformation of DTBN to the catalytic binding site of Mpro. Thus, gradations in reactivity among the tested Cathepsins may be conducive for a mechanism-based search for derivatives of nupharidine against COVID-19. This could be an alternative strategy to the large-scale screening of electrophilic inhibitors.


Subject(s)
Alkaloids/pharmacology , Cysteine Proteases/metabolism , Alkaloids/chemistry , Animals , Antiviral Agents/pharmacology , Binding Sites , COVID-19/metabolism , Catalytic Domain , Cathepsins/pharmacology , Cell Line, Tumor , Cysteine Proteases/chemistry , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/pharmacology , Humans , Mice , Molecular Docking Simulation/methods , Nuphar/chemistry , Papain/pharmacology , Plant Extracts/pharmacology , Protein Binding , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
3.
Heliyon ; 7(4): e06657, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1163819

ABSTRACT

AIMS: COVID-19 has currently emerged as the major global pandemic affecting the lives of people across the globe. It broke out from Wuhan Province of China, first reported to WHO on 31st December 2019 as "Pneumonia of unknown cause". Over time more people were infected with this virus, and the only tactic to ensure safety was to take precautionary measures due to the lack of any effective treatment or vaccines. As a result of unavailability of desired efficacy for previously repurposed drugs, exploring novel scaffolds against the virus has become the need of the hour. MAIN METHODS: In the present study, 23 new annomontine analogues were designed representing ß-Carboline based scaffolds. A hypothesis on its role as an effective ligand was laid for target-specific binding in SARS-CoV-2. These molecules were used for molecular docking analysis against the multiple possible drug targets using the Maestro Interface. To ensure the drug safety of these molecules ADME/Tox analysis was also performed. KEY FINDINGS: The molecular docking analysis of the 23 novel molecules indicated the efficiency of these derivates against COVID-19. The efficiency of molecules was computed by the summation of the docking score against each target defined as LigE Score and compared against Hydroxycholoquine as a standard. Based on the docking score, the majority of the annomontine derivatives were found to have increased binding affinity with targets as compared to hydroxycholoquine. SIGNIFICANCE: Due to the lack of efficiency, effectiveness, and failure of already repurposed drugs against the COVID-19, the exploration of the novel scaffold that can act as effective treatment is much needed. The current study hence emphasizes the potential of Annomontine based - ß- Carboline derivatives as a potential drug candidate against COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL